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Abstract

In this paper we discuss the application of a noise cancelling technique to extract
energy storage information from sensors occurring during fusion reactor experiments on
the Tandom Mirror Experiment-Upgrade (TMX-U) at the Lawrence Livermore National
Laboratory (LLNL). We show how this technique can be used to decrease the uncertainty
in the corresponding sensor measurements used for diagnostics in both real-time and post-
experimental environments. We analyze the performance of the algorithm on the sensor
data and discuss the various tradeoffs. The algorithm suggested is designed using SIG,

an interactive signal processing package developed at LLNL.
Background

Controlled fusion of heavy isotopes of hydrogen (deuterium and tritium) would enable
virtually limitless energy [1] and therefore provide a solution to the dwindling supply of
conventional energy sources. Ultimately, deuterium, which occurs naturally in water, rep-
resents a fuel reserve that would last for billions of years. Fusion reactions occur when ions
of the hydrogen isotopes, heated to sufficient temperatures, collide and overcome the elec-
trical forces of separation. When the nuclei fuse, enormous amounts of energy are released
in the form of neutrons and protons from a relatively small amount of matter. The basic
requirement for controlled fusion is to heat a plasma (or ionized gas) to high temperatures,
in excess of 108 degrees, and confine it for times long enough that a significant number of
fusion events occur. In order to confine, heat, sustain, and maintain purity the hot plasma
must be isolated in a vacuum from contact with the surrounding vessel walls. One method
of accomplishing this is call magnetic confinement.

The magnetic confinement method presently used at Lawrence Livermore National
Laboratory (LLNL) is the result of over 30 years of research [2,3], starting with a single
magnetic mirror cell and evolving to a tandem mirror with thermal barriers {4-6|, the
Tandem Mirror Experiment - Upgrade (TMX-U) experiment. Results from this experiment
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are leading to design principles for a commercial reactor. In Fig. 1 we show a schematic of
the TMX-U experiment presently operating at LLNL. As shown in the figure, the tandom
mirror consist of a large sausage-shaped region (central cell) with a mirror cell at each end.
Here the magnetic forces confine the plasma within the reacting region until after many
collisions they eventually escape. The confining magnetic fields are produced by 24 water
cooled coils requiring 20 MW of power to generate peak fields of 2.2T. A target plasma is
generated by electrical breakdown of deuterium gas with intense beams of microwaves. The
high power microwaves, 800 KW at 24 GHz, also heat the electrons by electron cyclotron
resonance heating (ECRH) to temperatures in excess of 50 KeV. Hot deuterium ions are
created by ionization and charge exchange with the target plasma of neutral deuterium
atoms injected at 15 KeV using a neutral beam system consisting of up to 24 neutral
beams producing 5 MW of power for 80 msec pulses. Additional heating of ions can be
obtained by ion cyclotron resonance heating (FeRH) using rf power injection of 200 KW
in the frequency range of 1.5-4.0 MHz. This electrical environment requires specialized
diagnostic sensors and processing techniques to accurately measure plasma parameters
without perturbing the confined plasma.

A parameter of significant importance to magnetically confined plasmas is the diamag-
netism of the plasma. This is a measure of the energy density stored in the hot particles.
It is also used to determine the beta, 3, the ratio of kinetic pressure (nKT) to magnetic
field pressure (B%/2u0) indicating the efficiency of utilization of applied magnetic fields. A
single-turn loop transformer is used as the sensor for the plasma diamagnetism [7-10]. As
the plasma particle pressure increases due to heating, it will exclude magnetic field lines
from inside thus increasing the apparent magnetic field around the plasma column. The
single-turn transformer has d¢/dt generated as its output. Thus, time integration of this
waveform can be used to calculate the plasma, 3. On TMX-U we expect values of 3 up
to 0.5 in the end-cell regions. This paper is concerned with the dynamic estimation of the
plasma diamagnetism.

In the TMX-U plasma, a number of noise sources are present which make the estima-
tion of # difficult. Variations of the magnetic field used to contain the plasma are present
because of feedback circuits and ripple currents in the main power system. In many cases
the signal that is used to determine the plasma diamagnetism is so badly corrupted with
coherent frequency noise (ripple) that the plasma perturbation due to diamagnetism is not
even visible. The present noise removal process involves subtraction of a short block of
signal that represents the noise component only from data during the time that plasma is
present. The noise reference block is aligned in phase with each of the signal plus noise
data blocks so that the offending ripple component is removed. The result is integrated
and a measure of the plasma diamagnetism is obtained. When the signals are approaching
the noise level, or when the feedback control system has introduced a linear trend to the
data, this approach is no longer satisfactory. A more sophisticated technique must be used
for the processing of the measured signals. It must incorporate trend removal with the
capability of removing the coherent noise without affecting the frequency content of the
plasma perturbation itself. In this paper we will show how the problem can be viewed as
a noise cancelling problem which can be solved using an identification approach.
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In the next section we develop the noise canceller using a system identification ap-
proach. Next we summarize the algorithm implementation using a solution to the gen-
eralized Levinson problem, then we discuss the design of the processor for the plasma
estimation problem and summarize the results in the final section.

Noise Cancelling Via System Identification

In this section we develop the algorithm for the noise canceller using an identifica-
tion approach. The concept of noise cancelling evolves naturally from applications in
the biomedical (EKGs, patient monitoring, speech, etc.) and seismological areas {11-13].
Ideally, for noise cancelling to be effective the measured data contains little or no signal in-
formation for a period of time so that the only information recorded is the noise, therefore,
when the signal occurs it is uncorrelated with the reference noise (e.g. pulses in radar, etc.).
The initial algorithms developed were adaptive requiring long data records in order for the
algorithm to converge, new approaches eliminate this requirement [13,14]. Variations from
the ideal case still met with success. For example, even if signal information is present in
the reference record, a reasonable signal estimate can still be obtained. Also, independent
measurements can be used rather than the same data record partitioned into reference
and signal plus reference. The removal of 60 Hz disturbances can be accomplished by
measuring the line voltage as the reference, for instance. In any case, the plasma diagnos-
tics required for monitoring fusion reaction is an ideal candidate for cancelling, since the
reference noise can be obtained directly from the measured signal plus noise record, the
signal is uncorrelated with the noise, and the onset of the plasma is known.

The fundamental noise cancelling problem is depicted in Fig. 2. Here we assume that
the noise corrupting the signal is passed through a linear system,

y(t) = s(t) + ha(t) = nlt) - vn (2, (1)
r'(t) = ha(t) * n(t + valt) (2)

where

y is the measured data

s i1s the signal

n is the disturbance or noise

v is the random disturbance or noise

r' is the measured reference noise, and

h is the sensor or measurement system dynamics.

The convolution operation * is defined by

N N
h(t) +n(t) = Y h()n(t—3) = Y A()g 'n(t) = H(g ")n(t)

1=
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for
H(g™') = h(0) + h(1)g ™" ~ - - + R(N)g ¥,
and q is a shift or delay operator (i.e., ¢g""n(t) = n(t - 1)).
Thus, using these relations the convolution equations of (1,2) can be expressed as

y(t) = s(t) + Hi(g " )n(t) + v (t), (3)
T’(t) = Hg(q_l)n(t) + 'Ug(t). (4)

The noise cancelling problem can be defined in terms of a parameter estimation prob-
lem by eliminating n from the above relations, i.e., if we assume that Hs is invertible
(exists), then we have

n(t) = Hy '(g ')r'(t) — Hy ' (g7 )walt).
Substituting for n in the measurement equation, we obtain

y(t) = s(t) + Hi(g ™) H; (™) [7'(1) - ma(8)] + ma(),
or more simply,
y(t) = s(t) + H(g™')r(t) + o(t) ()
where H(g™) = Hy(qV)H;(g™), 7(t) = r'(t) - va(t), and v{t) = vy (t).
Equation (5) defines an input/output model for the noise cancelling problem with the

input sequence given by {r(t)} and the output by {y(t)}. Using this formulation, we can
state the corresponding noise estimation problem as

Given the mode] of (5), measurement sequence {y(t)}, and the noise reference
sequence {r(t)}, Find the best (minimum error variance) estimate of the noise, n(t).

This problem differs from the classical signal estimation problemt because more informa-
tion about the characteristics of the noise is available in the reference data. Using the
solution to this problem, the canceller is constructed as depicted in Fig. 2. We see at the
output of the canceller, that the estimated or filtered response is given by

2(t) = y(t) - n(1). (6)

The minimum variance estimate, #i(t), removes or cancels the reference noise, as is easily
seen by substituting the estimator,

n(t) = H(g)r(t) (7)

t Actually this estimation problem is a system identification problem as noted by
Ljung [11]
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above and using (5) for y(t) to obtain
B(t) = s(t) = [H(g™) - H(gM)|r(t) = o(2). (8)

Clearly, as H — H then 2 — s + v. If the random measurement noise, v(t) were minimal
(small variance), then 2 — s, i.e., the estimator would provide the minimum variance
estimate of s as well, however, for v significant, further processing must be used to obtain
the minimum variance estimate of s.

Thus, we see that noise cancelling can be viewed as a two step process:

1. Obtain the minimum variarnce estimate of the noise, n(t) , and

2. Subtract the estimated noise, #(t), from the measured data, y(t).

If we define the criterion function,

J(t) = E{e*(1)}

where the error is given by ¢(t) = y(t) — A(t), then the minimum variance estimator is
obtained by finding the H(¢™!) that minimizes the criterion, i.e.,

mingJ(t).

The solution to this problem is obtained by differentiating J with respect to each of the
h(t), setting the result to zero and solving the resulting set of equations, i.e.,

aJ(t) )
an(k) ~ an(r) Zle )
- 2B4() )

The error gradient is found by substituting Eqn. 7 for A(t) to obtain

Oe(t)

Bh(k) it - k),
and therefore,
0I18) _ —2E{(y(t) + ih(i)r(f —1))r(t - k)},
ah(k) £
N



Setting this expression to zero and solving, we obtain the so-called normal equations

Carrying out the summations, we obtain the set of linear vector-matrix equations,

Ry (1) R,(0) R(-1) - R, (1-N)\ [ h(1)

N S . . ?

Ry,:(N) R,(]\;—l) R(N-2) - R0 h(N)

or solving for h we obtain
h(N) = -R; 'R, (N) (10)

It is straightforward to show that the corresponding error variance, R, is given by

R = R.(0) - By, (N)R: 'R, (N) (11)

This set of linear equations can be solved using standard techniques in linear algebra
or since the covariance matrix to be inverted has a Toeplitz structure, a more efficient
technique employing the generalized Levinson approach discussed in the next section.

Generalized Levinson Recursion

The noise cancelling problem requires the solution of the set of linear equations given
in Eqn. 10, where R, is a Toeplitz matrix. Efficient algorithms to invert Toeplitz matrices
recursively were developed by Levinson [15,16], and extended to the so-called "general-
ized” case by Wiggins and Robinson [17]. In this section, we develop the LWR for this
problem. The LWR recursion can be developed in two steps. The first establishes the
basic recursion, and the second is the standard Levinson recursion for inverting Toeplitz
matrices. We will use the notation {h¥} to denote the i*" coefficient of the k'* order filter
and the corresponding autocorrelation as R; = E{z(t)z(t + ;)} and crosscorrelation as
g; = E{z(t)y(t + 7)}. In this notation, Eqn. 10 becomes

B

(N) = —R"EQ(J’V] (12)
Let us assume that we have the k** order filter that satisfies the set of normal equations,
Ry -+ Ry][hE 9o
A I N (13)
R, --- Ro ht Gk



and we want the (k + 1)** order solution given by

Ro -+ Rpnr] [he™ 90
P o= (14)
Resi -+ Ro ] [t 9k+1

Suppose the optimum solution for the (k + l)th order filter is is given by the k" order,

then A'(k+1) = R'(k) : 0 Jand g'(k+1) =! ¢'(k) I Vi | with V} = gzi;. We can
rewrite Eqn. 14 as

Ry -+ R, R.
S TR T [ ak) g(k)
: i : : Ce = | ... (15)
Ry -« Ry Ry 0 v,
Resi -+ R Ro

where V; = Y\ hiRi_; ;.

We must perform operations on Eqn. 15 to assure that V, = g, for the correct
solution. Let us assume there exists a solution {af*l} such that t

Ry -+ Rpyp)[efM Vk+1
Reyy -+ Ro oft] 0

Now by elementary manipulations, we can reverse the order of the components, mul-
tiply by a constant, K., and subtract the result from Egn. 15, that is,

h¢ aﬁjf go 0
RO . Rk+1 '0 R ) . :
: : el = Kesr | = - ) = K|
Rew - R ||| " ) o I
*l 0 _ag*‘ Vi Vk+1
or
hk _ Kk' ak+l
Ry -+ Rpyy i -ﬂ o ] %0
: f : _ ) : 17
hﬁ — Kkﬂalf“ 9k ( )
Ry -+ R el -
-Ki1a] k= K1tk

t Note that this the solution to this set of equations results in the standard Levinson-
Durbin recursion of linear prediction theory /13]
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Here the multiplier Kj,; is selected so that

Vi— Kk+1vk?1 = Gk-1

By identifying the coefficients h(k ~ 1), g(k + 1) from Eqn. 17 with o} = 1, we obtain the
first part of the recursion

Initialize: vy = Ro-r}/Ry,Vo= Ry
For 1=1,-- ,k

1
Vi = Z h;Ri—]—J—l
3=0

AV

Ky = — ol (18)
Ui+

W = K

h;-+l = h; - Ki+1a:t;+l fOT l S ] S 1’

In order to satisfy the recursion, we must also obtain a recursion for the predictor,

{af“}, and vgy; from the solution of Eqn. 16. This can be accomplished using the
well-known Levinson-Durbin recursion [13] for the {aj-} as:

Initialize: wvo =Ry, Ao= Ry, K{=-R/Ry

For 1=1,---k

1
_E 1D
7=0

A
* 1 .
Kign = — (19)
Uy
i+l _ g
o = K,
i+1_‘i_Kﬁ 1 for 1< 7 <1

LY
U4l = Yy — Kz-,—]At

10



This completes the solution to the Toeplitz inversion using the generalized Levinson
algorithm. The noise cancelling algorithm is implemented using SIG [18], by first per-
forming the generalized Levinson recursion to estimate the optimal noise cancelling filter
h, filtering the reference noise r, to provide the estimated noise 7, and subtracting it from
the signal plus noise data. The design and application of the processor are discussed in
the next section. ' '

Plasma Estimation Using the Noise Canceller

In this section, we analyze the acquired diamagnetic loop (DML) sensor measurements
and show how the data can be processed to retain the essential information required for
post-experimental analysis. The measured DML data is analog (anti-alias) filtered and
digitized at a 25 KHz sampling rate (40 p sec sample interval). A typical experiment
generates a transient signal (plasma) which is recorded for approximately 650 msec. Pre-
processed data (decimated etc.) and .the frequency spectrum are shown in Fig. 3 along
with an expanded section of the transient pulse and noise. We note that the raw data is
contaminated with a sinusoidal drift, linear trend, and random noise as well as sinusoidal
disturbances at harmonics of 60 Hz, the largest at 360 Hz caused by the feedback circuits
and ripple currents in the main power system. The pulse is also contaminated by these
disturbances. We also note that some of the plasma information appears as high energy
spikes(pulses) riding on the slower plasma build-up pulse.

A processor must be developed to eliminate these disturbances, yet preserve all of
the essential features of the transient plasma pulse and associated energy spikes. This
application is ideally suited for noise cancelling. The basic requirements of the data are
that a reference file of noise and of the signal and noise are available. For best results,
the signal and noise should not be correlated. These conditions are satisfied by the DML
measurement data, since the onset of the measurement consists only of the disturbances
(trend and sinusoids), and the signal is available at the time of the transient plasma pulse.

During the operation of the TMX experiment a "shot™ (injection of a plasma into the
reactor) terminates after a few seconds, during this time data are collected and displayed
so that the experimenter can adjust process parameters and criteria and perform another
shot within a five (5) minute time period. So we see that even though the processor need
not be on-line, it still must function in a real-time enviroment. Clearly, post-experimental
analysis creates no restrictions on the processor design and alloted computational time.
So we analyzed the performance of the processor to function for both real-time and post-
experimental modes of operation. We studied :he performance of the processor by varying
its length IN . The real-time processor must perform reasonably well enough to enable the
experimenter to make the necessary decisions regarding the selection of process parameters
for the next shot.

After some preliminary runs of the processor over various data sets we decided to
use N = 512 weights for the post-experimental design since it produced excellent results.
Using the post-experimental design as a standard we then evaluated various designs for

11
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weights in the range of 8 < N < 512. Before we discuss the co:nparisions, let us consider
the heuristic operation of the processor. Investigating the blcck diagram of Fig. 2. we
see that the crucial step in the design of the canceller is the estimation of the optimal
noise filter A which is required to produce the minimum variance estimate of the noise, 7.
In essence we expect the filter to spectrally match the corres; onding noise spectrum in
magnitude and phase. This means that we expect the optimal filter to pass the spectral
peaks of the noise and attenuate any signal information not con:ained in the reference file.
These results are confirmed as shown by the performance of the 512-weight filter shown
in Fig. 4a. Here we see that the filter passbands enable most of the noise resonances to
pass while signal energy is attenuated. The real-time design is shown below in Fig. 4b.
Here we see that the 64-weight filter still passes much of the noise energy but does not
spectrally match the noise as well as the 512-weight filter since there are fewer weights.
These results are again confirmed in Fig. 5 where the estimated and actual noise spectra
are shown. Again we see that the 512-weight produces a much hetter spectral match than
the 64-weight design due to its increased resolution. Note tha: the highest energy noise
spectral peaks were matched by both processors reasonably well thereby eliminating these
disturbances in the cancelling operation. Intermediate designs {or the real-time processor
fall in between these results where selecting higher number of we ghts the resulted in better
processor performance.

It should be mentioned that we chose to use the FIR (all-zero) solution to this prob-
lem, rather than the IIR (pole-zero) as suggested in [11! or [14) because initial attempts
at identifying the optimal noise filter were unsatisfactory prin.arily because of the high
resonances (sinusoids) in the data. The IIR identifiers could icentify the frequencies but
always overestimated the damping which proved detrimental wh~n the estimated noise was
cancelled (subtracted) from the signal plus noise measurements.

The noise canceller algorithm was constructed using variois commands in SIG dis-
cussed previously. Both the post-experimental and real-time de-igns were run on the data
set described in Fig. 3 and the results are show in Fig. 6 and 7 for the post and real-time
processors, respectively. Here we see the raw and processed data and corresponding spec-
tra. Note that the sinusoidal disturbances and trend have been eliminated (spectrum). A
closer examination of the estimated transient pulse shows that not only have the distur-
bances been removed, but that the integrity of the pulse has bee! maintained and all of the
high frequency energy spikes have been preserved. We see tha: the 512-weight processor
has clearly eliminated the trends and sinusoidal disturbances nd retained the transient
plasma information quite well while the real-time (64-weight) processor has not performed
as well as evidenced by some remaining (though small) sinusoical disturbances. However,
for the real-time requirements it is satisfactory.

Once these disturbances have been removed, the processed -ignal can be integrated to
remove or deconvolve the effects of the differentiating DML probe and provide an estimate
of the stored energy build-up in the machine.
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Summary

In this paper we have developed a noise cancelling algorithm using the system iden-

tification approach and applied it to the problem of estimating a transient plasma pulse
for the magnetic fusion experiment (TMX-U). We have developed solutions for both post-
experimental analysis and real-time processing and analyzed the performance of the corre-
sponding processors. More effort will continue in developing processors for the experiments
and they will utilize model-based signal processing ideas {19].
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